
《正比例》教学设计
作为一位杰出的教职工,常常要写一份优秀的教学设计,借助教学设计可以让教学工作更加有效地进行。一份好的教学设计是什么样子的呢?以下是小编为大家收集的《正比例》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《正比例》教学设计1教学目标:
1 使学生理解什么是相关联的量。
2 掌握正比例的意义及字母表达式。
3 学会判断两个量是否成正比例关系。
教学过程:
一、导入
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)
1表中有( )和( )两种量。
2 路程是怎样随着时间的变化而变化的?
3 任意写出三个相对应的路程和时间的比,并算出它们的比值。
4 比值实际上表示( ),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)
师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)
反思:
从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。
以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。
《正比例》教学设计2教学内容:
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
教材分析:
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
教学目标:
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
教学重点:
认识正、反比例的意义
教学难点:
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
课时安排:
正比例和反比例(4课时)
第 ……此处隐藏14343个字……学设计14
教学要求:
1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学过程:
一、复习铺垫
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、引入新课
我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。
二、教学新课
1、教学例1。
出示例1。让学生计算,在课本上填表。
让学生观察表里两种量变化的数据,思考。
(1)表里有哪两种数量,这两种数量是怎样变化的?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论。
提问:这里比值50是什么数量?(谁能说出它的数量关系式?)
想一想,这个式子表示的是什么意思?
2、教学例2
出示例2和想一想
要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。
学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?
比值1.6是什么数量,你能用数量关系式表示出来吗?
谁来说说这个式子表示的意思?
3、概括正比例的意义。
像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。
4、具体认识
(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?
例2里的两种量是不是成正比例的量?为什么?
(2)做练习八第1题。
5、教学例3
出示例3,让学生思考/
提问:怎样判断是不是成正比例?
请同学们看一看例3,书上怎样判断的,我们说得对不对。
强调:关键是列出关系式,看是不是比值一定。
三、巩固练习
1、做练一练第1题。
指名学生口答,说明理由。
2、做练一练第2题。
指名口答,并要求说明理由。
3、做练习八第2题(小黑板)
让学生把成正比例关系的先勾出来。
指名口答,选择几题让学生说一说怎样想的?
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?
五、家庭作业。
《正比例》教学设计15【教学内容】
正比例
【教学目标】
使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】
重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】
投影仪。
【复习导入】
1.复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?
板书: =速度。
②已知总价和数量,怎样求单价?
板书: =单价。
③已知工作总量和工作时间,怎样求工作效率?
板书: =工作效率。
2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。
【新课讲授】
1. 教学例1。
教师用投影仪出示例1的图和表格。
学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?
(2)铅笔的总价是怎样随着数量的变化而变化的?
(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:
①铅笔的总价随着数量变化,它们是两种相关联的量。
②数量增加,总价也增加;数量降低,总价也减少。
③铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2.教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?
组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3.归纳概括正比例关系。
①组织学生分小组讨论,上面两个例子有什么共同规律?
②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
学生说一说是怎么理解正比例关系的。
要求学生把握三个要素:
第一:两种相关联的量。
第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三:两个量的比值一定。
4.用字母表示正比例的关系。
教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)
5.教师:想一想,生活中还有哪些成正比例的量?
学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;
【课堂作业】
完成教材第46页的“做一做”(1)~(3)。
答案:
(1) 。
(2)比值表示每小时行驶多少km。
(3)成正比例。理由:路程随着时间的变化而变化。
①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。